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Rate Constants from Uncorrelated Single-Molecule Data
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We describe a method for estimating rate constants of a two-state Markov system from data obtained by a
single-molecule (SM) type of experiment corrupted by white noise. The method is effective even when the
characteristic (or resolution) time of the measurement is much longer than a characteristic time of the two-
state system, and the data are uncorrelated. We apply our suggested method to data from an SM experiment
on the transport of sugar molecules through cell membrane channels. The method is quite accurate in analyzing
this set of data. We also demonstrate that in some cases the method can be used to check whether the system
is Markovian or not.

1. Introduction that its characteristic time is larger than the resolution fifhe.

. . . . __However, when the system dynamics are fast and its charac-
Recent successes in experimentally observing the behavior, =~ "~ ' = s .
: s t - teristic time is shorter than the resolution time, spectral analysis
of single molecules; ¢ enables one to study dynamic properties

of a system without perturbing it from its equilibrium state. This will fail because data obtained from a single trajectory will be

cannot be done using traditional bulk measurements, in which almost_uncorrelated. . N

one perturbs the system and then observes the decay to the In this paper we describe a method for estimating Fhe rate
equilibrium state. There is a significant difference between bulk svc;]lsrﬁﬂt gggt\;vr%'itgfs '}gﬂoﬁlﬁso?;f:{gh{a%i ?jggtr']veeiﬁ\;ﬁg
and single-molecule (SM) experiments. The first of these deals pietely X

with ensemble averages while the second monitors the behavioqgug\;\gg? irﬁﬁt&l:gg \é\’;ﬁ:]zt\g: ?Sger(#;ﬁ:fr;itgr? SEH;pg?f?ciZ:lrgr
of single molecules out of the ensemble and provides a time ' y

average of some observable for a given “trajectory” of the will be. given in section 3 by applying it to data from an SM
molecule. Different realizations of the SM trajectory will experiment on the transport of sugar molecules through cell

produce different values of the time average. Repetition of the membrape channe_?s.ln this experiment a single trimeric
experiment a number of times provides an estimate of the malltopcl)rm (ilrﬁnnel is used to I()bs?r\{e Fherf)asrs]age Olf s;]ngle sugar
probability density of the time average. Because of the property mho eciei' en adsugar molecule Is In the channel, the current
of ergodicity this density must approach a delta function form through the trimer decreases.

centered at the value of the bulk average as the time interval t(?u:\ﬂap&roach to tthe estlmgtlon of rate con”stants fotr tV\r’]O' K
used in averaging tends to infinity. When the measurement time S'&1€ Markovian systéms can, in some cases, aflow oné to chec

is finite, the density estimate will differ from the delta function the correctness of the assumption that the experimental system

form, thereby providing additional information to estimate is M.arkovian. Simulations relating to this point are given in
dynamical properties of the system. section 4.

It is worth noting that different realizations of SM trajectories
can be found from measurements on different molecules
randomly chosen from the ensemble or can be different pieces We analyze a system whose dynamics are defined by random
of a long trajectory produced by a single molecule. In the first transitions between two states, 1 and 2, so that the trajectory of
case the averages will not be correlated, while in the secondthe system can be described as an alternating sequence of
case they will be. These correlations can be exploited to gain sojourns in the two states. Legt(t) be the probability density
information about properties of the dynamics. Standard tech- for a single sojourn time in state When the system is

2. Mathematical Framework

niques for analyzing data from a single realization of a stochastic Markovian, so thati(t) = ke k!, i = 1, 2, where thé; are rate

process are based on correlation or spectral analysis. constants, it can be described by the simple scheme
The time interval used in averaging, the resolution time of

the SM measurement, is an important parameter that potentially Ky

restricts the applicability of spectral analysis. Spectral analysis 1 T_; 2 (2.1)

is useful when the dynamics of interest are slow in the sense

In a SM experiment a physical observable of the system is

T Center for Information Technology, NIH. ; ; - i _
* Laboratory of Physical and Structural Biology, NIH. measured for timd@. For single-channel recordings the observ

s St. Petersburg Nuclear Physics Institute. Currently employed at NIH, @ble is the measured current. Lietbe the intensity of this
I'Karpov Institute of Physical Chemistry. Currently employed at NIH. observable when the system is in the statkn addition, one
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records noise that has to be taken into account. We can model The parameters needed to fikgandk, arepi* ando,(At).

this process as

1(t) = 14(t) + DY2&(t)

wherelgic(t) is a dichotomic process randomly taking the values
I; andl,, and&(t) is zero-mean Gaussian white noiéefunction
correlated and independent kfe(t). The parameteD is the
amplitude of this noise term.

If the resolution time of the device iAt, the currentl,(At)
measured at timg = nAt is

2.2)

" E() dt
(2.3)

|n(At)=Alt SE =, A dt+

The first term on the right-hand side of this equation is related
to the fraction of time, out of the total tim&t, that the system
has been in state 1. This fraction will be writtenx@g\t). The
term&(t) dt is the differential of the Wiener process, which we
express ag(t) dt = dW(t). Therefore, we can write

Dl/2
1L(A) = 1, + X (ADAl + AW, (2.4)

whereAl = I; — I, and AW, = W(t,)) — W(tq—1). The Wiener

These, together with the relations in eqs 2.7 and 2.9 provide
estimates of the rate constants. We need the following informa-
tion to do so: the intensities of the current in the two stdtes,
andly; the intensity of the noisd); and the experimental series
{In(At)} wheren = 1, ...,N with N = T/At. The estimates of
the first moment and variance are given by the standard formulas

N
(A1)

n=

1(At) = h (2.10)
N

N
52(At) = éZ[In(At) - 1(AD)]? (2.11)

where the overbars denote estimates. WIfi) is an unbiased
estimate of the current, that B(At)0= leq = 12 + AlpS", the
estimator of the varianc@? (At), is unbiased only to terms of
order N(kAt)~1. Because it has been assumed that lxath
andN are much greater than 1, this lower-order contribution
will be neglected. Using the results of egs 2.5 and the asymptotic
behavior 2.9, we can write

process is characterized by the properties (i) the increments areand

all independent, (ii) the increments have a Gaussian distribution,

and (iii) the first moment oAW, is equal to zero and the second
moment, iISCAW,2[}= At. Under these conditions it is possible
to calculate the moments &fAt) from (2.4). The first moment
and variance can be written as

(A= 1, + KADAI (2.5)

D

0 2(AY) = AlPo (At) + A (2.6)

o= Lo L2 o 2 (2.12)
_ 201, — qu)(leq_ 1) (2.13)

o2 (At)AL —

The individual rate constants can be expressed in ternmis of
andp}?as

k= (1 - pidk k, = pik

The replacement dfqandoi?(At) in egs 2.12 and 2.13 by their

(2.14)

We therefore have a relation between the average and variancestimates (At) and 5:2(At) allows one to estimat& and piq

of the observed currem(At) and the fraction of time out oAt
that the system has spent in state 1.
Expressions for the moments »fAt) can be derived from

and finally thek;.
We now characterize the sampling errors in the estimates of
pi® and k due to the finite total number of observations.

results obtained in refs 10 and 11. These can be used to estimat€onsider first the error in the estimatepgf. Sincel(At) is just

the two rate constants. For the first moment we can write
e k2
X(At) = p; == (2.7)

wherek = k; + kp andp{’is the equilibrium probability for the

the current sampled at the tiniAt, it follows that I(At) =
I(NAt). Therefore, the variance ¢fAt) is
0,2 = 0,5 (NAt) (2.15)

Combining this result with eq 2.6 we find an expression for

system to be in state 1. The theoretical expression for the the standard deviation @ which we denote by[p¥:

variance %11

2p77 3 1

_ _ A kAt
At |1 kalt € )

o, (AY) =

(2.8)

wherep;? = 1 — p{% Since we are primarily interested in the
limit of bad resolution, which means that is greater than the
characteristic time of the process}, we can use an asymptotic
form of eq 2.8

2p7" 3¢
KAt

0, X(A) ~ (2.9)

Values ofkAt of the order of 10 or more generally suffice to
validate this approximation.

olpS = \/ 5 2(NAY + NA?A . (2.16)

A somewhat more elaborate calculation of the standard deviation
for the estimatek yields the approximate expressién

oo ~ H . (Al) 501 = 1eg (o= 1) ,

= leg(leg — 1)KAL

O([kAltlz)] 40

To finish the theoretical analysis, we examine the question of
determining whether the data are consistent with the assumption
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Figure 1. Set of experimental datfl,(At)} from the ion channel . . . . .
experiment (inset) sampled At = 30 ms, together with the normalized ~ Figure 2. Comparison of the estimate of the probability density
autocorrelation function calculated from it. The point to notice is that ©OPtained from the data in Figure 1 from experiment 1 (463 s) with the

the autocorrelation function drops to a value essentially equal to zero theoretical expression in (2.19). The circles in this and the following
very rapidly, which would vitiate the use of a spectral analysis. The figure are found from the data. The thin line is drawn through the centers

experimental data were first sampled at a rate of 50 kHz and then of the circles. The thicker line is generated from the theoretical
resampled over consecutive intervals lasting 30 ms. expression in (2.19) for the same values of the current used in

representing experimental results.
that the system is Markovian or nbt.A solution for the
probability density of the fraction of time that the system spends
in one of the states of a two-state Markovian system has been

TABLE 1: Rate Constants Found Using Data for Two
Monitoring Times

derived in ref 10. Lep(x|At|) be the probability density for the exp 1 =463s) exp 2T =1635)
fraction of time spent in state 1. This function has been shown 1 (PA) 62.90 60.67
to be 12 (pA) 42.19 41.67
D (msecx pA?)  0.19 0.19
pse 0.970+ 0.001 0.968+ 0.002
— _ ki (ms™t 3.34+£0.16) x 1072 3.07£0.25)x 1072
P(IAL) = pie i ¥(x—1) + p3e Mo() + [2I0§q P kAL x o Emglg Corrom Coaroor
e edrq_
lo(y) + wyw)} g (XTI (5 18) channel reconstituted in a bilayer membrane formed from
2(1—x) dioleoylphosphatidylcholine. The membrane bathing aqueous

solution containg 1 M KCI, 1 mM CaC} and 10 mM Tris at
wherey = 2kAty/pih5%(1—x) andlo(y) andls(y) are modified pH 7.4. Conductance recordings were obtained at a 200 mV
Bessel functions of order 0 and*.Using p(x|At) and taking membrane potential difference, positive from the side of protein
into account the fact that the noise term in eq 2.2 representsaddition. The original sampling frequency was 50 kH, and the
Gaussian white noise, one can calculate the probability densityresampling to produce the data shown in Figure 1 was performed
for the random currenit(At) by by data averaging over consecutive intervals of 30 ms.
We have created nearly completely uncorrelated data sets by
g(l|At) = At 1p(x| At)e AYDN-1mAK2 gy (2 19) resampling high-resolution recordings of channel conductance
27DY0 using a resolution time much longer than the characteristic

. . . . correlation time of the system. Figure 1 shows the averaged
The last step in the analysis, whether the system is Markovian ya¢4 (in the inset) as well as the correlation function calculated

or not, is to compare the experimental probability density ¢om the raw data. The falloff in this function as a function of
obtained directly from the set of data with the theoretical result §imensionless time is evident. A comparison of the estimates

in this equation, replacing the rate constants by their estimates.obtained from two experiments is shown in the Table 1, which
was produced using the method outlined above, where the error
estimates have been calculated using (2.16) and (2.17). The
The SM experiments whose data have been analyzed are abléerms after thet signs have been set equal to 8ince the
to resolve single sugar molecule translocation through a single distribution function is essentially Gaussian.
transmembrane protein chanfidfrom these high-resolution The two rate constants for both experiments are in good
measurements of the channel conductance it has been founc&greement with rate constants found by conventional spectral
that, at low sugar concentrations, sugar binding is a two-state analysis applied to high resolution ddtalsing subsets of the
Markovian process in which the channel is partly blocked when two experiments taken with high-resolution data of 10 s duration,
a single sugar molecule is found in the channel. Two experi- we foundk; = (3.38 &+ 0.44) x 102 ms ! andk, = 1.17+
ments, differing in duration (463 and 163 s) were run, with 0.15 ms? for the longer experiment. For the shorter experiment
results as described below. the rate constants were found tole= (3.56+ 0.48) x 102
In generating the data shown in the inset of Figure 1, we ms! andk, = 1.15+ 0.16 ms'. We used the parameters in
used a low sugar concentrationgfin maltohexaose) to induce  Table 1 to calculate the probability density of the current for
transient blocking of ionic conductance of a single maltoporin two experiments according to eq 2.19. Figures 2 and 3 compare

3. Analysis of Experimental Data
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Figure 3. Same comparison for experiment 2 (163 s). In both cases
the agreement is_, seen to be quite good._ Notice t_hat _th(_a probability 058 60 62 684
density is still quite far from the asymptotic Gaussian limit. 40
the experimental and theoretical probability densities, showing '
good agreement between theory and experiment. <V T xponental ] .
4. A Test of the Markov Property 20 Fos b\ ™\ .
In the previous section we found that our suggested procedure
works well in estimating the rate constants for a two-state 10+ — ]
Markov system from nearly uncorrelated data. We also found ° 2
good agreement between the predicted probability density for 0 prs pos o4

the current with the density estimated from the data. This
suggests the further problem of whether a lack of agreement
Eetwee; da(;? and t.hﬁ tgleoretlcal result foun,\(/ltl frEm €q2.19 Cagby using the three forms afd(t), i = a, b, c in (4.2). The density

e used to distinguish between a two-state Markov system and, nq from the data is given by the circles, while the solid line is the
a two-state non-Markov system. The latter case indicates a moregensity calculated from eq 2.19. The first of these produces an estimate
complicated reaction scheme than that in eq 12.This quite close to that found by using eq 2.19 and does not suggest that
possibility was tested using simulated data. Accordingly, a set one could distinguish between these results and those produced by a
of data, {I,(At)}, was generated using most of the same true two-state Ma_\rkov system, while the remaining two do suggest a
parameters as the experimentally determined ones Summarizediev'at'on from this type of system. The three probability densities in
in Table 1. | i the dat . ted th eqg 4.2 are shown in the insets plotted as a function of the time in
in Table 1. In generating the data, we inserted the same iucc o nqe
resolution time, the same observation time, the same intensities i ) )
I1 andl,, and the same intensity of the white noise term. We Markovian or not, we compareg(l|At) with the corresponding
also assumed that the kinetics of the reaction 2 was first- histogram obtained from the data $&{(At)}. The simulations
order with the same value d§ as in Table 1 for the longer produced results shown in Figure 4, where it is seen that there
experiment. For the reaction-2 1 we used three different non- ~ are notlceagble discrepancies from the prediction based on eq

. ™ . . C )

Markovian probability densitiesys(t), having the common  2.19 for p3’(t) and »(t) whereas fory$(t) the results are
property that the mean lifetime is equalko ! wherek; is the relatively close to the theoretical prediction in the single
rate constant given in Table 1 for the longer experiment. The €xponential case. The curves in Figure 4 make the obvious point
three densities used in the simulations are that when the functional form prz(t) is not close to a negatlve

I(pA)
Figure 4. Comparison of estimates of the probability density obtained

exponential (cases b and c) it is possible to distinguish between
w(a)(t) _ §k [EX;{_ 3_k2t) o eXF(_ 3_k2t)] Markovian and non-Markovian systems.
2 87 4 2 5. Conclusions
Oy = Ty 2 _ ﬁzz 2 In this paper we have presenteq a method for obtaining rate
Yo () 22 ex 4 t constants of a two-state Markovian system from SM type
" experiments when the resolution is so bad that the time
Oy — , [2 okt correlations are lost. We have shown that in such situations it
vz \/; eXp(™ Y2 (4.2) is still possible to get the rate constants with good accuracy
» even when the data set of time averages is randomized.
For each of f[he depsmes we .generated a set of currentSyjoreover, in some cases, it is possible to distinguish between
{In(At)} following which we applied the procedure described parkovian and non-Markovian systems.
in section 2 to derive two rate constants under the assumption
that the system is Markovian. These rate constants were then Acknowledgment. L.K. gratefully acknowledges support by
used to calculate the probability densigl|At) according to the Swedish Foundation for International Cooperation in
the relation in eq 2.19. To check whether the system is Research and Higher Education.



6250 J. Phys. Chem. B, Vol. 105, No. 26, 2001

References and Notes

(1) Moerner, W. E., EdAcc. Chem. Re4996 29, 561-613 (a special
issue entirely devoted to SMS).

(2) Nie, S.; Zare, R. NAnnu. Re. Biophys. Struct1997 26, 567—
597.

(3) Xie, X. S.; Trautman, J. KAnnu. Re. Phys. Cheml99§ 49, 441—
480.

(4) Sciencel999 283 No. 5408, 16671695 (contains a collection
of articles on SMS).

(5) Chem. Phys1999 247, 1-189 (a special issue entirely devoted to
SMS).

(6) Bezrukov, S. MJ. Membr. Biol.200Q 174, 1-13.

(7) Neher, E.; Stevens, C. Annu. Re. Biophys. Bioengl1977, 49,
345-381.

(8) DeFelice, L. JIntroduction to Membrane Noisé’lenum Press:
New York, 1981.

(9) Bezrukov, S. M.; Kullman, L.; Winterhalter, MEEBS Lett200Q
476, 224-228.

Boguta et al.

(10) Berezhkovskii, A. M.; Szabo, A.; Weiss, G. H.Chem. Phys1999
110, 9145-9150.

(11) Bogurd, M. Berezhkovskii, M.; Weiss, G. HPhysica A200Q 282
475-485.

(12) Boguita, M. Berezhkovskii, M.; Weiss, G. H. To appeardnPhys.
Chem

(13) Even when the system is non-Markovian, it is possible to calculate
the mean relaxation time of the decay of equilibrium fluctuatian$som
moments of the single sojourn times in each of the stateg; beta single
sojourn time in state. It has been shown in ref 11 thatis

o 020,38 + 6,21, 0
2(1, [, [QL, CH- [£,0)
in which ¢i2 = 20+ M3 When the system is Markovian one finds that
=(k + k)t = kL
(14) Abramowitz, M.; Stegun, |. AHandbook of Mathematical Func-

tions Dover: New York, 1972.
(15) Boguta, M.; Weiss, G. H.Physica A200Q 282 486-494.



